type D (Chidambaram, Sequeira \& Sikka, 1964) with the bisector of the lone pairs directed toward the divalent copper ion. There are two equivalent bent $\mathrm{O}-\mathrm{H}--\mathrm{Cl}(2)$ hydrogen bonds from the water molecule. The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle of $109 \cdot 7(7)^{\circ}$ is significantly larger than the value of 104.5° in water vapour. It has been noted earlier also (Chidambaram, Sequeira \& Sikka, 1964; Sikka \& Chidambaram, 1969; Brown \& Chidambaram, 1969) that trigonally coordinated water molecules with lone pair coordination of type D show an increased $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle compared with tetrahedrally coordinated water molccules. The uncorrected $\mathrm{H}-\mathrm{H}$ distance of $1.562(11) \AA$ is less than the distance of $1.61(2) \AA$ found in the proton magnetic resonance study by McGrath \& Silvidi (1961); this follows the tendency found in other hydrates by El Saffar (1966) and also in $\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$ (Sikka, Momin, Rajagopal \& Chidambaram, 1968) and $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (Sequeira, Srikanta \& Chidambaram, 1970).

It may be noted that the coordinates of the hydrogen atom in the asymmetric unit derived by El Saffar (1968) from the proton resonance determination of the length and orientation of the interproton vector are $0.076,0.076,0 \cdot 178$. The disagreement of the z coordinate from the parameter list of Table 1 is due to a different choice of origin (El Saffar, private communication) placing the Cu at $\left(0,0, \frac{1}{2}\right)$ rather than at the origin we have chosen following Wyckoff (1965).

The investigation was carried out as part of the IPA (India-Philippines-International Atomic Energy Agency) Project. We are grateful to Dr R. Ramanna, Commissioner P. G. Afable, Dr P. K. Iyengar and Dr L. D. Ibe for their interest and encouragement.

References

Brown, G. M. \& Chidambaram, R. (1969). Acta Cryst. B25, 676.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE, A Fortran Crystallographic Function and Error Program. Oak Ridge National Laboratory Report ORNL-TM-306.
Busing, W. R. \& Levy, H. A. (1964). Acta Cryst. 17, 142.
Chidambaram, R., Sequeira, A. \& Sikka, S.. K (1964). J. Chem. Phys. 41, 3616.
Сhrobak, J. (1934). Z. Kristallogr. 88, 35.
El Saffar, Z. M. (1966). J. Chem. Phys. 45, 4643.
El Saffar, Z. M. (1968). Acta Cryst. B24, 1131.
Hamilton, W. C. (1964). Statistics in Physical Science. New York: Ronald Press.
Hendricks, S. B. \& Dickinson, R. G. (1927). J. Amer. Chem. Soc. 49, 2149.
Itoh, J., Kusaka, R., Yamagata, Y., Kiriyama, R. \& Ibamoto, H. (1953). Physica, 19, 415.
McGrath, J. W. \& Silvidi, A. A. (1961). J. Chem. Phys. 34, 322.
Momin, S. N., Sequeira, A. \& Chidambaram, R. (1969). To be published.
Sequeira, A., Srikanta, S. \& Chidambaram, R. (1970). Acta Cryst. B26, 77.
Sikka, S.K. \& Chidambaram, R.(1969).ActaCryst. B25, 310.
Sikka, S. K., Momin, S. N., Rajagopal, H. \& Chidambaram, R. (1968). J. Chem. Phys. 48, 1883.
Srikanta, S. (1968). Unpublished.
Wehe, D. J., Busing, W. R. \& Levy, H. A. (1962). A Fortran Program for Calculating Single Crystal Absorption Corrections. Oak Ridge National Laboratory Report ORNL-TM-229.
Wyckoff, R. W. G. (1965). Crystal Structures, Vol. III, p. 618. New York: Interscience.

Zalkin, A. (1962). Private communication.

The Crystal Structure of $\mathbf{Z r}_{\mathbf{7}} \mathbf{O}_{\mathbf{9}} \mathbf{F}_{\mathbf{1 0}}$

By Bo Holmberg
Research Institute of National Defence, Department 4, Stockholm 80 and Institute of Inorganic Chemistry, University of Stockholm, Stockholm, Sweden

(Received 7 February 1969)
$\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$, a new compound prepared from ZrF_{4} and ZrO_{2}, crystallizes in the orthorhombic space group Pbam with the unit-cell dimensions $a=6.443, b=26.851, c=4.071 \AA$. The structure has been refined by the method of least-squares from three-dimensional Weissenberg data. The zirconium atoms are six and seven coordinated and the coordination polyhedra (octahedra and pentagonal bipyramids) are joined by corners and edges in the (001) plane and by corners along the c axis. The structure is related to $\alpha-\mathrm{UO}_{3}$ in much the same way as the orthorhombic $\mathrm{U}_{3} \mathrm{O}_{8}$ structure. From these similarities a building principle for a series of compounds $(M A)_{2(3 n+1)} A_{4(3 n+1)-2 n}$ in which the composition asymptotically approaches the composition $M_{3} A_{8}$ is discussed.

Introduction

Several zirconium oxide fluorides have been observed by Kolditz \& Feltz (1961) in their studies of thermal
decomposition of zirconium tetrafluoride hydrates and zirconium oxide fluoride hydrates. To characterize existing compounds and to determine their structures a reinvestigation of the zirconium oxide fluoride system
has been started and this work reports the structure of the zirconium oxide fluoride, $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$, a new compound in the system.

Experimental

Crystals of the compound can be obtained from zirconium tetrafluoride and zirconium dioxide by heating the appropriate mixture in a sealed platinum tube at $800^{\circ} \mathrm{C}$ for several days. These are colourless with a rectangular prismatic shape. The lattice constants (Table 1) were determined from indexed powder photographs (Table 2) taken in a Guinier-Hägg camera with $\mathrm{Cu} K \alpha_{1}$ radiation ($\lambda=1 \cdot 54050 \AA$) and calibrated with $\mathrm{KCl}(a=6 \cdot 2919 \AA)$. From a crystal with the dimensions $0.034 \times 0.032 \times 0.049 \mathrm{~mm}$ equi-inclination Weissenberg diagrams about the c axis were taken with Ni-filtered $\mathrm{Cu} K \alpha$ radiation. The multiple-film technique was used. The intensities of the $h k 0$ and $h k 1$ reflexions were estimated visually with a standard scale. Of the 390 accessible reflexions 281 were observed, but 22 of these were too intense with the exposure times employed to allow a correct estimation of their intensities. The data were corrected for absorption (Werner, 1966) and then reduced in the usual way.

Table 1. Crystallographic data for $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$

Symmetry	Orthorhombic
Unit-cell dimensions	$a=6.443 \pm 0.001 \AA$
	$b=26.851 \pm 0.001$
Systematically absent reflexions	$c=4.071 \pm 0.001$
	$h 00$ with $h \neq 2 n$
Possible space groups	$0 k l$ with $k \neq 2 n$
	$P b a 2$ (No. 32)
Z	$P b a m$ (No. 55)
Density g.cm $^{-3}$	2
	$D_{m}=4.55$
	$D_{x}=4.59$

Table 2. $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$ Guinier powder pattern, $\mathrm{Cu} K \alpha_{1}$ radiation

I (obs)	$\sin ^{2} \theta$ (obs)	$h k l$	$\sin ^{2} \theta$ (calc)
w	0.01312	040	0.01317
m	0.01752	120	0.01758
w	0.02163	130	0.02170
$v s t$	0.03584	001	0.03581
w	0.04397	160	0.04392
$v s t$	0.05463	170	0.05461
$s t$	0.05722	200	0.05716
m	0.05798	210	0.05799
m	0.07777	250	0.07774
w	0.07972	161	0.07972
w	0.08225	$0,10,0$	0.08229
$w s t$	0.09051	171	0.09042
$s t$	0.09304	201	0.09297
w	0.09381	211	0.09379
w	0.11387	$1,11,0$	0.11386
m	0.13194	320	0.13191
m	0.13279	$1,12,0$	0.13279
m	0.13940	$2,10,0$	0.13945
$v s t$	0.14315	002	0.14322
w	0.14975	$1,11,1$	0.14967
w	0.15824	360	0.15824
$s t$	0.16127	$0,14,0$	0.16129
$s t$	0.16884	370	0.16894

Determination of the structure

The $h k 0, h k 1$ and $h k 2$ reflexions of similar index had similar intensities, with due regard for observational errors. Since the c axis is only $4.071 \AA$ in length, it appeared likely that the atoms, with the possible exception of a few anions, were lying within, or were very close to, cvery second mirror plane characteristic of the space group $P b a m$, one of the alternatives given by the systcmatically absent reflexions (Table 1). The remaining anions, placed on the other set of mirror planes, could lie between two zirconium atoms but not between two anions.

A pseudo-hexagonal sub-cell, resembling the unit cell of $\alpha-\mathrm{UO}_{3}$ (Zachariasen, 1948), could be distinguished on the films and was taken as evidence that the atom arrangement in the structure was approximately the same as that in $\alpha-\mathrm{UO}_{3}$. From the index relationships the vector relations between the sub-cell and the true cell were found to be:

$$
\begin{aligned}
& \mathbf{a}=2 \mathbf{a}_{\text {hex }}+\mathbf{b}_{\text {hex }}=3.720 .1 / 3 \AA \\
& \mathbf{b}=7 \mathbf{b}_{\text {hex }} \quad=3.836 .7 \\
& \mathbf{c}=\mathbf{c}_{\text {hex }} \quad=4.071 \\
& V=14 V_{\text {hex }}
\end{aligned}
$$

From these relations an idealized structure can be obtained for $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$. In the hexagonal $\alpha-\mathrm{UO}_{3}$ structure each uranium atom is surrounded by eight oxygen atoms. The coordination group is a cube, $\mathbf{c}_{\text {hex }}$ being one of the body diagonals. There are 14 subunits in the true cell, each containing one cation. They give the parameters of the 14 zirconium atoms and of the 14 anions situated above the zirconium along the $c_{\text {hex }}$ axis. Furthermore, the sub-units give locations for 28 anions. As there are only 24 anions to place, four of those sites must be excluded. This was done in such a way that each of 12 zirconium atoms is surrounded by only five more anions, instead of six as in the $\alpha-\mathrm{UO}_{3}$ structure. From this idealized model a trial structure was worked out by adjusting to the chosen space group (Pbam) and by introducing distortions of the atoms in the neighbourhood of the four empty sites. The trial structure was tested by a few cycles of least-squares refinement and was found to converge.

Refinement

The refinement proceeded via full-matrix least-squares with isotropic temperature factors utilizing the Crystal Structure Calculations Systems, X-ray 63 (1964) subprogram ORFLS. A Hughes (1941) weighting scheme (w) was used. The unobserved data were included in the refinement and given $w=0$ for $F_{o}>F_{c}$ and $w=1$ for $F_{o} \leq F_{c}$, the F_{o} 's being calculated from the minimum observable intensity. The F_{c} 's were calculated with the ionized scattering factors for fluorine, oxygen and zirconium (International Tables for X-ray Crystallography, 1962).

Some efforts were made to distinguish the fluorine from the oxygen atoms by studying the isotropic temperature factors of the anions for different arrangements (Holmberg, 1966) but no significant changes were observed. However, in the final calculations oxygen atoms were assumed to be in the positions with the higher temperature factors. The final R index was 0.082 (259 reflexions). The atomic parameters with their estimated standard deviations are given in Table 3, where OF represents a fluorine or oxygen atom. Observed and calculated structure factors are listed in Table 4. The F_{c} 's for 7 of the 109 unobserved reflexions, marked with an asterisk, are greater than their respective F_{o} 's.

Description of the structure

The $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$ structure is shown in projection along the c axis in Figs. 1 and 2(a). From the list of interatomic distances in Table 5 it is seen that $\mathrm{Zr}(1)$ is surrounded by six anions, either oxygen or fluorine (O, F) and the other zirconium atoms by seven. Within the coordination polyhedra (the octahedron and the pentagonal bipyramids) the greatest variation in distances is observed for the $\operatorname{Zr}(4)$ group, 1.98 to $2.46 \AA$. However, the mean distances are about the same in all three pentagonal bipyramids ($2 \cdot 11,2 \cdot 11,2 \cdot 13 \AA$) and they are reasonably longer than the mean distance within the octahedron $(2.05 \AA)$. The structure is built up by

Table 3. Final atomic parameters for $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$, space group Pbam (No. 55)
E.s.d.'s are given in brackets.

	Point position	x	y	z	B
$\mathrm{Zr}(1)$	2(a)	0.0	$0 \cdot 0$	0	$1 \cdot 12$ (10) \AA^{2}
$\mathrm{Zr}(2)$	4(g)	$0 \cdot 4484$ (4)	0.0634 (1)	0	$1 \cdot 01$ (8)
$\mathrm{Zr}(3)$	$4(g)$	0.0028 (5)	$0 \cdot 1442$ (1)	0	$1 \cdot 16$ (8)
$\mathrm{Zr}(4)$	$4(g)$	$0 \cdot 4401$ (5)	0.2229 (2)	0	1.90 (9)
OF(1)	$4(g)$	0.6879 (29)	0.0095 (8)	0	2.43 (43)
OF(2)	$4(g)$	0.1230 (34)	0.0722 (9)	0	$2 \cdot 85$ (48)
OF(3)	$4(g)$	0.7308 (29)	$0 \cdot 1040$ (7)	0	1.92 (40)
OF(4)	$4(g)$	0.3573 (29)	$0 \cdot 1429$ (8)	0	1.89 (39)
OF(5)	$4(g)$	0.7560 (26)	$0 \cdot 1969$ (7)	0	1.67 (38)
OF(6)	$4(g)$	$0 \cdot 1332$ (30)	$0 \cdot 2167$ (8)	0	0.87 (39)
OF(7)	2 (b)	0	0	$\frac{1}{2}$	$3 \cdot 24$ (160)
OF(8)	4(h)	$0 \cdot 4569$ (44)	0.0681 (13)	$\frac{1}{2}$	$2 \cdot 50$ (104)
OF(9)	4(h)	0.9933 (46)	0.1437 (10)	$\frac{1}{2}$	2.94 (125)
OF(10)	4(h)	$0 \cdot 4439$ (41)	$0 \cdot 2188$ (11)	$\frac{1}{2}$	¿-36 (95)

Table 4. Final structure factor table for $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$
The data are listed in groups of constant h and l. The three columns within each group are $k, 10 F_{o}$ and $10 F_{c}$. Those data not included in the refinement are marked with an E and the unobserved data are indicated with an asterisk.

(a)

(b)

Fig. 1. Part of the $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$ structure viewed along the c axis. The zirconium atoms are represented by filled circles.
corner and edge sharing between these coordination polyhedra. In the (001) plane they are joined in both ways, but along the c axis only by corner sharing. In Table 6, giving the $(\mathrm{O}, \mathrm{F})-(\mathrm{O}, \mathrm{F})$ distances, the distances between atoms common to two coordination groups

Fig. 2. Projections along the \mathbf{c}_{o} direction of the $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$ structure (a) and the $\mathrm{U}_{3} \mathrm{O}_{8}$ structure (b).
are marked with (s.e.). As expected the shared edges are shorter than the unshared edges of the coordination polyhedron.

Table 5. Coordination around the zirconium atoms, distances with e.s.d.'s (\AA)

$\mathrm{Zr}(1)-\mathrm{OF}(1)$	2.03 ± 0.02 (2)
-OF(2)	2.09 ± 0.03 (2)
-OF(7)	2.04 ± 0.01 (2)
$\mathrm{Zr}(2)-\mathrm{OF}(1)$	$2 \cdot 12 \pm 0.02$ (1)
-OF(1)	$2 \cdot 15 \pm 0.02$ (1)
-OF (2)	$2 \cdot 11 \pm 0.03$ (1)
-OF (3)	$2 \cdot 12 \pm 0.02$ (1)
-OF (4)	2.21 ± 0.02 (1)
-OF(8)	2.04 ± 0.01 (2)
$\mathrm{Zr}(3)-\mathrm{OF}(2)$	2.08 ± 0.03 (1)
-OF(3)	2.06 ± 0.02 (1)
-OF(4)	2.28 ± 0.02 (1)
-OF(5)	$2 \cdot 13 \pm 0.02$ (1)
-OF(6)	$2 \cdot 12 \pm 0.02$ (1)
-OF(9)	2.04 ± 0.01 (2)
$\mathrm{Zr}(4)-\mathrm{OF}(4)$	$2 \cdot 21 \pm 0.02$ (1)
-OF(5)	2.15 ± 0.02 (1)
-OF(6)	1.98 ± 0.02 (1)
-OF(511)	2.46 ± 0.02 (1)
-OF(611)	2.04 ± 0.03 (1)
-OF(10)	2.04 ± 0.01 (2)

Table 6. Interatomic distances (\AA)
E.s.d.'s are less than $0.03 \AA$.
$O F(7)-O F(1)$
$O F(8)-O F(1)$
2.87

OF(1) -OF(2)
3.27
$\begin{array}{ll}\mathrm{OF}(2)-\mathrm{OF}(11) & 2.51 \text { (s.e.) } \\ \mathrm{OF}(11)-\mathrm{OF}(1) & 2.48 \text { (s.e.) }\end{array}$

Table 6 (cont.)

-OF(2)	2.96	$\mathrm{OF}(1)-\mathrm{OF}(3)$	$2 \cdot 55$
-OF(3)	2.86	$\mathrm{OF}(3)-\mathrm{OF}(4)$	$2 \cdot 62$
-OF(4)	2.93	$\mathrm{OF}(4)-\mathrm{OF}(2)$	2.43 (s.e.)
-OF(11)	3.06		
$\mathrm{OF}(9)-\mathrm{OF}(2)$	$2 \cdot 92$	$\mathrm{OF}(2)-\mathrm{OF}(3)$	$2 \cdot 67$
-OF(3)	$2 \cdot 85$	$\mathrm{OF}(3)-\mathrm{OF}(5)$	$2 \cdot 50$
-OF(4)	$3 \cdot 11$	$\mathrm{OF}(5)-\mathrm{OF}(6)$	2.49 (s.e.)
-OF(5)	$2 \cdot 92$	OF(6) -OF(4)	2.45 (s.e.)
-OF(6)	$2 \cdot 97$		
OF(10)-OF(4)	$2 \cdot 94$	OF(4) -OF(5)	$2 \cdot 95$
-OF(5)	$2 \cdot 92$	OF(5) -OF(611)	2.45 (s.e.)
-OF(6)	$2 \cdot 86$		
-OF(511)	$3 \cdot 28$		
-OF(611)	$2 \cdot 94$		

Discussion

The relationship of $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$ to the hexagonal $\alpha-\mathrm{UO}_{3}$ structure is similar to its relationship to the orthorhombic $\mathrm{U}_{3} \mathrm{O}_{8}$ (Zachariasen, 1945; Andresen, 1958; Loopstra, 1964), Fig.2(b). Neglecting small shifts from the ideal positions, the cations form a pseudo-hexagonal arrangement with the following relation to the $\alpha-\mathrm{UO}_{3}$ unit cell:

$$
\begin{aligned}
\mathbf{a}_{o} & =2 \mathbf{a}_{\text {hex }}+\mathbf{b}_{\text {hex }} \\
\mathbf{b}_{o} & =\mathbf{b}_{\text {hex }} \quad a_{o} \neq b_{o} \cdot V 3 \\
\mathbf{c}_{o} & =\mathbf{c}_{\text {hex }} \\
V_{o} & =2 V_{\text {hex }} .
\end{aligned}
$$

Instead of describing these structures in relation to $\alpha-\mathrm{UO}_{3}$ it is more convenient to relate them to a hypothetical orthorhombic $M A_{3}$ structure with the above defined unit cell and with all the common edges of the coordination polyhedra lying within the (001) plane [Fig. 3(a)]. If the formula is written $(M A)_{2} A_{4}$, the two groups of A atoms with different functions in the structure are better recognized. In Figs. 3(b) and (c) the structures of $\mathrm{U}_{3} \mathrm{O}_{8}$ and $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$ are shown in an idealized way. The $\mathrm{U}_{3} \mathrm{O}_{8}$ structure can be derived from three parent units by removing one A atom from every third plane perpendicular to \mathbf{b}_{o}. This changes the coordination of the M atoms from eight to seven and the composition to $(M A)_{6} A_{12-2}$. The sequence of A atoms which have been removed is $\overline{33}$. The $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$ structure can be derived from seven parent units by
removing A atoms in the sequence $\overline{43434}$ which gives the composition $(M A)_{14} A_{28-4}$. This implies that the coordination is unchanged for two of the fourteen M atoms. However, the rearrangement of the atoms around the empty sites (Fig.4) increases the distances between these two cations and two of the anions [thus $\mathrm{Zr}(1)-\mathrm{OF}(3)=3.29 \AA$]. This leaves six anions as close neighbours, mean distance $2.05 \AA$ in $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$.

Starting from the hypothetical $(M A)_{2} A_{4}$ structure, a series of structures can be postulated in which the ratio between seven and eight coordinated M atoms may increase. Their compositions will be $(M A)_{2(3 n+1)}$ $\times A_{4(3 n+1)-2 n}$ where $(3 n+1)$ is the number of parent units in which $2 n A$ atoms have been removed. The

Fig. 3. The hypothetical orthorhombic $M A_{3}$ structure and its relation to $\alpha-\mathrm{UO}_{3}$. Open circles represent M atoms at $z_{0}=0$ and A atoms at $z_{o}=\frac{1}{2}$ and small filled circles A atoms at $z_{o}=0(a)$. Idealized representation of the $\mathrm{U}_{3} \mathrm{O}_{8}(b)$ and the $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$ (c) structures. The crosses indicate \boldsymbol{A} atoms subtracted from the $M A_{3}$ matrix.

Table 7. The series $(M A)_{2(3 n+1)} A_{4(3 n+1)-2 n}$

Member	Number of parent units $(3 n+1)$	Number of removed A atoms (2n)	Sequence	$(M A)_{2(3 n+1)} A_{4(3 n+1)-2 n}$	$\frac{A}{M}=3-$	$\frac{2 n}{2(3 n+1)}$	Compound
0	1	0		$(\mathrm{Me} A)_{2} A_{4}$	3		
1	4	2	$\overline{441}$	$(\mathrm{Me} A)_{8} A_{14}$	2.750		
2	7	4	43434	$(\mathrm{Me} A)_{14} A_{24}$	2.714		$\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$
3	10	6	1343 3431	$(\mathrm{Me} A)_{20} A_{34}$	2.700		
7	22	14	$\overline{333433333343331}$	$(\mathrm{Me} A)_{44} A_{74}$	$2 \cdot 682$		
∞	3	2	1331	$(\mathrm{Me} A)_{6} A_{10}$	$2 \cdot 667$		$\mathrm{U}_{3} \mathrm{O}_{8}$

Fig. 4. The rearrangement of the nearest A neighbours to a subtracted A atom (a) connected with the coordination change from eight to seven (b).
sequences will be $44, \overline{43434}, \overline{343343}$ and so on. Thus, the structure of $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$ is the second member of this series and the $\mathrm{U}_{3} \mathrm{O}_{8}$ structure the end member, Table 7.

To reduce the anion to cation ratio below $\frac{8}{3}\left(M_{3} A_{8}\right)$ requires the introduction of six coordination by removing A atoms with the sequence 2 , which very likely occurs in the oxygen deficient non-stoichiometric $\mathrm{U}_{3} \mathrm{O}_{8}$ (Sato, Doi, Ishii \& Ushikoshi, 1961). This con-
cept will be further discussed in a forthcoming article on the structure of $\mathrm{Nb}_{5} \mathrm{O}_{12} \mathrm{~F}$.

The author wishes to thank Professor A. Magnéli for valuable comments on the manuscript.

References

Andresen, A. F. (1958). Acta Cryst. 11, 612.
Crystal Structure Calculations System, X-ray 63 (1964). TR-64-6 (NSG-398), Computer Science Center, Univ. of Maryland, and Research Computer Laboratory, Univ. of Washington.
Holmberg, B. (1966). Acta chem. scand. 20, 1082.
Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Kolditz, L. \& Feltz, A. (1961). Z. anorg. allg. Chem. 310, 217.

Loopstra, B. O. (1964). Acta Cryst. 17, 651.
Sato, R., Doi, H., Ishi, D. \& Ushikoshi, H. (1961). Acta Cryst. 14, 763.
Werner, P. E. (1966). World List of Crystallographic Computer Programs. 2nd Edn. Accession number 6019. Utrecht: Oosthoek.
Zachariasen, W. H. (1945). Manhattan Project Report CK-2667.
Zachariasen, W. H. (1943). Acta Cryst. 1, 265.

Acta Cryst. (1970). B 26, 835

Aminoboranes. The Crystal Structure of 1, 3-Di-p-chlorophenyl-2-tri-ethylcarbinyl-4-ethyl-5,5-diethyl-1,3-diaza-2,4-diborolidine, $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{~B}_{2} \mathrm{Cl}_{2}{ }^{*}$

By Chun-che Tsal and William E.Streib \dagger
Department of Chemistry, Indiana University, Bloomington, Indiana 47401, U.S.A.

(Received 9 February 1968 and in revised form 5 August 1969)

Abstract

The structure of 1,3-di-p-chlorophenyl-2-triethylcarbinyl-4-ethyl-5,5-diethyl-1,3-diaza-2,4-diborolidine, $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{~B}_{2} \mathrm{Cl}_{2}$, has been determined by a three-dimensional single-crystal X-ray diffraction study. The crystals are tetragonal, space group $P 4_{2} / m, a=16.943 \pm 0.008, c=9.599 \pm 0.005 \AA$ at approximately $-125^{\circ} \mathrm{C}$ with four molecules per unit cell. The structure was solved independently by Patterson map analysis and by the direct method. The molecule contains a heterocyclic five-membered ring which is isoelectronic with cyclopentadiene. Bond lengths in this ring are $\mathrm{N}(1)-\mathrm{B}(2)=1.433(10), \mathrm{B}(2)-\mathrm{N}(3)=$ 1.489 (9), $\mathrm{N} 3-\mathrm{B}(4)=1.421$ (10), $\mathrm{B}(4)-\mathrm{C}(5)=1.576$ (11) and $\mathrm{C}(5)-\mathrm{N}(1)=1.492$ (10) \AA. Crystal symmetry requires the molecule to have $m\left(C_{s}\right)$ symmetry which is, however, pseudosymmetry due to disorder of one of the ethyl groups. The residual is 0.072 for 1814 observed data.

Introduction

The heterocyclic compound, $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{~B}_{2} \mathrm{Cl}_{2}$, was synthesized by Casanova \& co-workers (Casanova, Kiefer, Kuwada \& Boulton, 1965; Casanova, 1966; Casanova \& Kiefer, 1969) who suggested the problem to us as one which needed structural proof and as part of a con-

[^0]tinuing collaboration to determine fundamental chemical and structural information about aminoboranes. Our preliminary communication (Tsai \& Streib, 1968) reported the correct structure to contain a diazadiborolidine ring. We present here the completed study and a more detailed interpretation of our results.

Experimental

The colorless crystals grew as needles of square crosssection when recrystallized from methanol. Preliminary

[^0]: * Contribution No. 1798 from the Department of Chemistry, Indiana University.
 \dagger Author to whom correspondence should be addressed.

