type D (Chidambaram, Sequeira & Sikka, 1964) with the bisector of the lone pairs directed toward the divalent copper ion. There are two equivalent bent O-H---Cl(2) hydrogen bonds from the water molecule. The H–O–H angle of $109.7(7)^{\circ}$ is significantly larger than the value of 104.5° in water vapour. It has been noted earlier also (Chidambaram, Sequeira & Sikka, 1964; Sikka & Chidambaram, 1969; Brown & Chidambaram, 1969) that trigonally coordinated water molecules with lone pair coordination of type D show an increased H-O-H angle compared with tetrahedrally coordinated water molecules. The uncorrected H-H distance of 1.562(11) Å is less than the distance of 1.61(2) Å found in the proton magnetic resonance study by McGrath & Silvidi (1961); this follows the tendency found in other hydrates by El Saffar (1966) and also in Ba(ClO₃)₂. H₂O (Sikka, Momin, Rajagopal & Chidambaram, 1968) and $K_2C_2O_4$. H_2O (Sequeira, Srikanta & Chidambaram, 1970).

It may be noted that the coordinates of the hydrogen atom in the asymmetric unit derived by El Saffar (1968) from the proton resonance determination of the length and orientation of the interproton vector are 0.076, 0.076, 0.178. The disagreement of the z coordinate from the parameter list of Table 1 is due to a different choice of origin (El Saffar, private communication) placing the Cu at $(0, 0, \frac{1}{2})$ rather than at the origin we have chosen following Wyckoff (1965).

The investigation was carried out as part of the IPA (India-Philippines-International Atomic Energy Agency) Project. We are grateful to Dr R. Ramanna, Commissioner P. G. Afable, Dr P. K. Iyengar and Dr L. D. Ibe for their interest and encouragement.

References

- BROWN, G. M. & CHIDAMBARAM, R. (1969). Acta Cryst. B25, 676.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1964). ORFFE, A Fortran Crystallographic Function and Error Program. Oak Ridge National Laboratory Report ORNL-TM-306.
- BUSING, W. R. & LEVY, H. A. (1964). Acta Cryst. 17, 142.
- CHIDAMBARAM, R., SEQUEIRA, A. & SIKKA, S., K (1964). J. Chem. Phys. 41, 3616.
- CHROBAK, J. (1934). Z. Kristallogr. 88, 35.
- EL SAFFAR, Z. M. (1966). J. Chem. Phys. 45, 4643.
- EL SAFFAR, Z. M. (1968). Acta Cryst. B24, 1131.
- HAMILTON, W. C. (1964). *Statistics in Physical Science*. New York: Ronald Press.
- HENDRICKS, S. B. & DICKINSON, R. G. (1927). J. Amer. Chem. Soc. 49, 2149.
- ITOH, J., KUSAKA, R., YAMAGATA, Y., KIRIYAMA, R. & IBAMOTO, H. (1953). *Physica*, **19**, 415.
- MCGRATH, J. W. & SILVIDI, A. A. (1961). J. Chem. Phys. 34, 322.
- MOMIN, S. N., SEQUEIRA, A. & CHIDAMBARAM, R. (1969). To be published.
- SEQUEIRA, A., SRIKANTA, S. & CHIDAMBARAM, R. (1970). Acta Cryst. B26, 77.
- SIKKA, S.K. & CHIDAMBARAM, R. (1969). Acta Cryst. B 25, 310.
- SIKKA, S. K., MOMIN, S. N., RAJAGOPAL, H. & CHIDAMBA-RAM, R. (1968). J. Chem. Phys. 48, 1883.
- SRIKANTA, S. (1968). Unpublished.
- WEHE, D. J., BUSING, W. R. & LEVY, H. A. (1962). A Fortran Program for Calculating Single Crystal Absorption Corrections. Oak Ridge National Laboratory Report ORNL-TM-229.
- WYCKOFF, R. W. G. (1965). *Crystal Structures*, Vol. III, p. 618. New York: Interscience.
- ZALKIN, A. (1962). Private communication.

Acta Cryst. (1970). B26, 830

The Crystal Structure of Zr₇O₉F₁₀

BY BO HOLMBERG

Research Institute of National Defence, Department 4, Stockholm 80 and Institute of Inorganic Chemistry, University of Stockholm, Stockholm, Sweden

(Received 7 February 1969)

 $Zr_7O_9F_{10}$, a new compound prepared from ZrF_4 and ZrO_2 , crystallizes in the orthorhombic space group *Pbam* with the unit-cell dimensions a = 6.443, b = 26.851, c = 4.071 Å. The structure has been refined by the method of least-squares from three-dimensional Weissenberg data. The zirconium atoms are six and seven coordinated and the coordination polyhedra (octahedra and pentagonal bipyramids) are joined by corners and edges in the (001) plane and by corners along the *c* axis. The structure is related to α -UO₃ in much the same way as the orthorhombic U₃O₈ structure. From these similarities a building principle for a series of compounds $(MA)_{2(3n+1)}A_{4(3n+1)-2n}$ in which the composition asymptotically approaches the composition M_3A_8 is discussed.

Introduction

Several zirconium oxide fluorides have been observed by Kolditz & Feltz (1961) in their studies of thermal decomposition of zirconium tetrafluoride hydrates and zirconium oxide fluoride hydrates. To characterize existing compounds and to determine their structures a reinvestigation of the zirconium oxide fluoride system has been started and this work reports the structure of the zirconium oxide fluoride, $Zr_7O_9F_{10}$, a new compound in the system.

Experimental

Crystals of the compound can be obtained from zirconium tetrafluoride and zirconium dioxide by heating the appropriate mixture in a sealed platinum tube at 800°C for several days. These are colourless with a rectangular prismatic shape. The lattice constants (Table 1) were determined from indexed powder photographs (Table 2) taken in a Guinier-Hägg camera with Cu $K\alpha_1$ radiation ($\lambda = 1.54050$ Å) and calibrated with KCl (a = 6.2919 Å). From a crystal with the dimensions $0.034 \times 0.032 \times 0.049$ mm equi-inclination Weissenberg diagrams about the c axis were taken with Ni-filtered Cu $K\alpha$ radiation. The multiple-film technique was used. The intensities of the hk0 and hk1 reflexions were estimated visually with a standard scale. Of the 390 accessible reflexions 281 were observed, but 22 of these were too intense with the exposure times employed to allow a correct estimation of their intensities. The data were corrected for absorption (Werner, 1966) and then reduced in the usual way.

Table 1. Crystallographic data for Zr₇O₉F₁₀

Orthorhombic
$a = 6.443 \pm 0.001 \text{ Å}$
$b = 26.851 \pm 0.001$
$h_{0}^{2} = 4.071 \pm 0.001$
$0kl$ with $k \neq 2n$
Pba2 (No. 32)
<i>Pbam</i> (No. 55)
$\frac{2}{D} = 4.55$
$D_m = 4.59$ $D_x = 4.59$

Table 2. $Zr_7O_9F_{10}$ Guinier powder pattern, Cu K α_1 radiation

I(obs)	$\sin^2 \theta(\text{obs})$	hkl	$\sin^2 \theta$ (calc)
w	0.01312	040	0.01317
т	0.01752	120	0.01758
w	0.02163	130	0.02170
vst	0.03584	001	0.03581
w	0.04397	160	0.04392
vst	0.05463	170	0.05461
st	0.05722	200	0.05716
т	0.05798	210	0.05799
т	0.07777	250	0.07774
w	0.07972	161	0.07972
w	0.08225	0,10,0	0.08229
vst	0.09021	171	0.09042
st	0.09304	201	0.09297
w	0.09381	211	0.09379
w	0.11387	1,11,0	0.11386
т	0.13194	320	0.13191
т	0.13279	1,12,0	0.13279
т	0.13940	2,10,0	0.13945
vst	0.14315	002	0.14322
w	0.14975	1,11,1	0.14967
w	0.15824	360	0.15824
st	0.16127	0,14,0	0.16129
st	0.16884	370	0.16894

Determination of the structure

The hk0, hk1 and hk2 reflexions of similar index had similar intensities, with due regard for observational errors. Since the *c* axis is only 4.071 Å in length, it appeared likely that the atoms, with the possible exception of a few anions, were lying within, or were very close to, every second mirror plane characteristic of the space group *Pbam*, one of the alternatives given by the systematically absent reflexions (Table 1). The remaining anions, placed on the other set of mirror planes, could lie between two zirconium atoms but not between two anions.

A pseudo-hexagonal sub-cell, resembling the unit cell of α -UO₃ (Zachariasen, 1948), could be distinguished on the films and was taken as evidence that the atom arrangement in the structure was approximately the same as that in α -UO₃. From the index relationships the vector relations between the sub-cell and the true cell were found to be:

From these relations an idealized structure can be obtained for $Zr_7O_9F_{10}$. In the hexagonal α -UO₃ structure each uranium atom is surrounded by eight oxygen atoms. The coordination group is a cube, c_{hex} being one of the body diagonals. There are 14 subunits in the true cell, each containing one cation. They give the parameters of the 14 zirconium atoms and of the 14 anions situated above the zirconium along the c_{hex} axis. Furthermore, the sub-units give locations for 28 anions. As there are only 24 anions to place, four of those sites must be excluded. This was done in such a way that each of 12 zirconium atoms is surrounded by only five more anions, instead of six as in the α -UO₃ structure. From this idealized model a trial structure was worked out by adjusting to the chosen space group (Pbam) and by introducing distortions of the atoms in the neighbourhood of the four empty sites. The trial structure was tested by a few cycles of least-squares refinement and was found to converge.

Refinement

The refinement proceeded via full-matrix least-squares with isotropic temperature factors utilizing the Crystal Structure Calculations Systems, X-ray 63 (1964) subprogram ORFLS. A Hughes (1941) weighting scheme (w) was used. The unobserved data were included in the refinement and given w=0 for $F_o > F_c$ and w=1 for $F_o \le F_c$, the F_o 's being calculated from the minimum observable intensity. The F_c 's were calculated with the ionized scattering factors for fluorine, oxygen and zirconium (International Tables for X-ray Crystallography, 1962). Some efforts were made to distinguish the fluorine from the oxygen atoms by studying the isotropic temperature factors of the anions for different arrangements (Holmberg, 1966) but no significant changes were observed. However, in the final calculations oxygen atoms were assumed to be in the positions with the higher temperature factors. The final R index was 0.082 (259 reflexions). The atomic parameters with their estimated standard deviations are given in Table 3, where OF represents a fluorine or oxygen atom. Observed and calculated structure factors are listed in Table 4. The F_c 's for 7 of the 109 unobserved reflexions, marked with an asterisk, are greater than their respective F_c 's.

Description of the structure

The $Zr_7O_9F_{10}$ structure is shown in projection along the *c* axis in Figs. 1 and 2(*a*). From the list of interatomic distances in Table 5 it is seen that Zr(1) is surrounded by six anions, either oxygen or fluorine (O,F) and the other zirconium atoms by seven. Within the coordination polyhedra (the octahedron and the pentagonal bipyramids) the greatest variation in distances is observed for the Zr(4) group, 1.98 to 2.46 Å. However, the mean distances are about the same in all three pentagonal bipyramids (2.11, 2.11, 2.13 Å) and they are reasonably longer than the mean distance within the octahedron (2.05 Å). The structure is built up by

Table 3. Final atomic parameters for Zr₇O₉F₁₀, space group Pbam (No. 55)

	Point position	x	у	z	В
Zr(1)	2(a)	0.0	0.0	0	1·12 (10) Å ²
Zr(2)	4(g)	0.4484 (4)	0.0634 (1)	0	1.01 (8)
Zr(3)	4(g)	0.0028 (5)	0.1442(1)	0	1.16 (8)
Zr(4)	4(g)	0.4401 (5)	0.2229 (2)	0	1.90 (9)
OF(1)	4(g)	0.6879 (29)	0.0095 (8)	0	2.43 (43)
OF(2)	4(g)	0.1230 (34)	0.0722 (9)	0	2.85 (48)
OF(3)	4(g)	0.7308 (29)	0.1040 (7)	0	1.92 (40)
OF(4)	4(g)	0.3573 (29)	0.1429 (8)	0	1.89 (39)
OF(5)	4(g)	0.7560 (26)	0.1969 (7)	0	1.67 (38)
OF(6)	4(g)	0.1332 (30)	0.2167 (8)	0	0.87 (39)
OF(7)	2(b)	0	0	1 <u>1</u>	3.24 (160)
OF(8)	4(h)	0.4569 (44)	0.0681 (13)	1	2.50 (104)
OF(9)	4(h)	0.9933 (46)	0.1437 (10)	$\frac{1}{2}$	2.94 (125)
OF(10)	4(h)	0.4439 (41)	0.2188 (11)	1/2	2.36 (95)

E.s.d.'s are given in brackets.

Table 4. Final structure factor table for Zr₇O₉F₁₀

The data are listed in groups of constant h and l. The three columns within each group are k, $10F_o$ and $10F_c$. Those data not included in the refinement are marked with an E and the unobserved data are indicated with an asterisk.

1. g M g L	31 533 1023	11 303 265	25 384 359	14 667 662	5 1130 23	18 582 622	****il	17 3024 214
4 529 563		12 1262F 1482	26 1830 234	15 292 150	6 463 419	19 548 535	ú 1149 127i	18 557 545
	3.8.0	11 449 417	27 165 431	14 1154 174	7 10106 2411	20 3154 144	1 147 414	10 3714 143
	A 11016 3-63	1. 1. 1. 1.		17 2000 06		31 3034 30	1	
	0 11416 3052	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	20 019 019		0 220 133	21 3020 27	2 246 234	20 614 361
0 161 665	1 10506 1122	12 214 011		18 629 525	4 1/1 14/	22 321 300	3 202 105	21 823 944
2 1330 24	2 22.7 205	16 243• 35	5.K.C	19 451 912	10 227+ 39	23 451 423	4 253 26C	22 240+ 135
4 16540 4056	3 119+ 107	17 893 866	1 401 756	20 786 819	11 769 7eC	24 779 865	5 1249 1312	23 221+ 72
6 321 307	4 265 207	18 516 485	2 667 260	21 152• 73	17 1360 1388	25 362 354	6 783 744	24 274 220
8 414 1166	5 9606 740	19 254+ 228	3 584 543		13 210 131	26 284 71	7 2710 23	
423 377	6 190 124	20 456 449	4 544 455	7.8.0	14 2149 49	27 2849 248	8 561 683	6.8.1
1 11 121	7 1750 10	21 1521 1644	5 444 414	1 1/01 11/5	15 468 517	78 811 757	A 446 200	6 3160 ACC
					1, 161, 10	10 160 117		0 3130 303
1300 1577	6 330 424	22 230 184	8 444 1072	2 236 201	10 292* 10	24 350 317	10 - 04- 137	1 602 538
0 1330 43	9 13/ 23	23 2464 212	/ 10/3 1038	3 236 251	17 1207 1170	30 221- 174	11 278 319	2 422 338
8 1194 1246	10 1403E 1538	24 289 275	8 623 512	4 208* 226	18 266 218	31 196• 171	12 291+ 215	3 302* 71
a 343 340	11 579 537	25 302 283	9 246• 210	5 359 337	19 284+ 55		13 711 742	4 461 392
	12 1914 194	26 875 920	10 246* 19	6 480 434	20 291+ 183	3.8.1	14 739 705	5 1080 934
1.B.C	13 908 1065	27 552 562	11 657 549	7 205 1	21 1216 1253	1 700 678	15 3669 210	6 1020 1053
1 142 107	14 18748 2830	28 187+ 54	12 1299 1253	8 347 236	22 2960 246	2 1267 1324	10 1284 125	7 2449 85
3 544 541	15 245 214	24 408 488	11 1024 619	9 122 222	24 344 340	3 340 314	17 1204 255	
		30 340 463	14 1400	10 1010 100	24 2020 101	/ 3/3 10/		
3 401 472	10 288 201	30 380 432	14 2300 4	10 201- 120	24 3024 101	2 2 2 1 1 1 0 0	10 3224 58	Y 461 396
4 132 148	11 242 218		12 285 902	11 038 285	25 681 747	> 222 212	19 1141 1175	10 2910 220
5 474 37	18 746 743	4.K.C	16 246 178	12 627 560	26 444 474	9 10 46 1166	20 617 639	11 388 382
6 644 724	19 717 707	0 1403E 1810	17 246 277	13 1032 103e	27 517 477	7 1895E 2498	21 302* 14c	12 304 344
7 1180E 4241	20 317 156	1 1113E 1317	18 589 617	14 283 191	2E 271# 6	8 950 892	22 412 373	13 769 670
8 372 379	21 243+ 58	2 357 387	19 230* 229	15 541 575	24 527 544	9 3C1 362	23 514 456	14 535 530
9 212 153	22 681 643	3 1720 125	20 676 712		36 218 155	10 224 218	74 144 199	15 2584 60
1 1334 44	23 448 445	A 197 152	21 888 822	C . K . 1	31 788 859	11 251 211	25 127 111	11 3634 33
1 117 1174	34 909 1004	6 13646 1441	22 2018 54	4 171 114	<i><i><i>N</i>¹ <i>N</i>¹</i></i>	12 1104 1141		10 2320 72
	24 844 1008	5 12/40 1041	22 2010 30			12 1100 1101	20 221+ 200	17 2404 91
2 14/05 1040	25 435 410	6 423 437	23 1830 110	0 120 0 50	217.1	13 335 324	21 286 333	18 473 449
3 1464 41	26 227* 85	7 180 42	24 265 248	8 332 321	G 247CE 2035	14 2784 37		19 689 785
4 164* 93	27 352 331	8 657 724	25 243 224	10 457 475	1 595 640	15 546 518	5,K,1	20 597 707
5 565 618	28 901 985	9 537 439		12 176* 24	2 142 152	16 3350 14	1 652 641	
6 168 46	29 375 288	10 196* 227	6.K.C	14 2564E 285C	3 176° E3	17 696 723	2 490 407	7.8.01
7 1113E 1399	30 180* 192	11 451 393	C 301 353	16 306 294	4 21e 172	18 468 404	3 445 436	1 917 941
A 124 261	31 1640 199	12 320 286	1 728 727	18 878 902	5 416 419	19 3029 186	4 376 427	2 506 429
9 2238 67		13 966 1018	2 457 433	20 481 405	6 1838 88	20 637 659	5 125 116	3 3584 147
374 347	3.8.0	14 1333 1674	3 3444 373	33 631 644	7 1674 1	11 1224 1268		2200 107
276 207		14 14 14	3 2464 162			21 1326 1303	0 000 002	232 118
T 13145 1100	1 920 921	15 481 402	· ·// · ···	24 1342 1376	6 334 314	22 288 234	1 820 805	5 ZD8 Z69
2 374 320	2 1376E 1774	16 341 368	5 1068 1095	26 296* 83	9 163+ 122	23 2964 183	8 454 294	6 378 322
3 432 376	3 405 434	17 375 298	6 1235 1228	28 1016 959	10 1026 1269	24 291+ 233	9 302• 131	7 240* 1
4 450+ 207	4 286 238	18 262* 72	7 246* 84	30 316 325	11 496 449	25 278+ 242	10 302+ 13	8 259+ 147
5 794 880	5 263 300	19 1324 1400	8 928 985		12 183+ 152	26 761 769	11 570 458	9 2249 268
6 525 554	6 1289E 1672	20 938 939	9 579 474	1.8.1	13 670 766	27 534 528	12 1281 1674	10 2270 95
7 476 465	7 1690F 3663	21 2508 130	10 2438 286	1 1078 66	14 1812 1999	28 2278 73	11 609 777	11 484 489
8 2108 4	8 12155 1208	22 444 420	11 409 483	2 308 343	16 3336 10	30 414 444	14 3334 7	
	0 12136 1290	24 400 424		2 340 343	1, 2,3, 36	27 410 444	1- 302- 7	16 978 973
v 347 603	Y 403 451	23 311 477	12 913 915	3 345 346	10 231 235		13 434 518	12 815 800
u 244 210	10 283 268	24 449 471	13 892 832	4 162 124	17 232 221		16 2969 200	

Fig. 1. Part of the $Zr_7O_9F_{10}$ structure viewed along the c axis. The zirconium atoms are represented by filled circles.

corner and edge sharing between these coordination polyhedra. In the (001) plane they are joined in both ways, but along the c axis only by corner sharing. In Table 6, giving the (O, F)–(O, F) distances, the distances between atoms common to two coordination groups are marked with (s.e.). As expected the shared edges are shorter than the unshared edges of the coordination polyhedron.

Table	5.	Coordination	around	the	zirconium	atoms,
		distances	with e.s.	d.'s	(Å)	

Table 6. Interatomic distances (Å)

E.s.d.'s are less than 0.03 Å.

OF(7)-OF(1)	2.87	OF(1) –OF(2)	3.27
-OF(2)	2.92	OF(2) - OF(1)	2.51 (s.e.)
OF(8)-OF(1)	2.97	OF(11)–OF(1)	2·48 (s.e.)

Fig.2. Projections along the c_o direction of the $Zr_7O_9F_{10}$ structure (a) and the U_3O_8 structure (b).

	Table 0 (com.)						
-OF(2)	2.96	OF(1) –OF(3)	2.55	t.			
-OF(3)	2.86	OF(3) –OF(4)	2.62	С			
-OF(4)	2.93	OF(4) - OF(2)	2·43 (s.e.)	а			
$-OF(1^{1})$	3.06			а			
OF(9)-OF(2)	2.92	OF(2) –OF(3)	2.67	Ի			
-OF(3)	2.85	OF(3) –OF(5)	2.50	- F4			
-OF(4)	3.11	OF(5) –OF(6)	2·49 (s.e.)	Ľ			
-OF(5)	2.92	OF(6) –OF(4)	2·45 (s.e.)	С			
-OF(6)	2.97						
OF(10)–OF(4)	2.94	OF(4) –OF(5)	2.95	S			
-OF(5)	2.92	$OF(5) - OF(6^{11})$	2·45 (s.e.)	h			
-OF(6)	2.86						
-OF(511)	3.28			11			
-OF(611)	2.94			>			

Table 6 (court)

Discussion

The relationship of $Zr_7O_9F_{10}$ to the hexagonal α -UO₃ structure is similar to its relationship to the orthorhombic U₃O₈ (Zachariasen, 1945; Andresen, 1958; Loopstra, 1964), Fig.2(b). Neglecting small shifts from the ideal positions, the cations form a pseudo-hexagonal arrangement with the following relation to the α -UO₃ unit cell:

$$\mathbf{a}_{o} = 2\mathbf{a}_{hex} + \mathbf{b}_{hex}$$
$$\mathbf{b}_{o} = \mathbf{b}_{hex}$$
$$a_{o} \neq b_{o} \cdot \sqrt{3}$$
$$\mathbf{c}_{o} = \mathbf{c}_{hex}$$
$$V_{o} = 2V_{hex} \cdot$$

Instead of describing these structures in relation to α -UO₃ it is more convenient to relate them to a hypothetical orthorhombic MA_3 structure with the above defined unit cell and with all the common edges of the coordination polyhedra lying within the (001) plane [Fig. 3(a)]. If the formula is written $(MA)_2A_4$, the two groups of A atoms with different functions in the structure are better recognized. In Figs. 3(b) and (c) the structures of U_3O_8 and $Zr_7O_9F_{10}$ are shown in an idealized way. The U₃O₈ structure can be derived from three parent units by removing one A atom from every third plane perpendicular to \mathbf{b}_o . This changes the coordination of the M atoms from eight to seven and the composition to $(MA)_6A_{12-2}$. The sequence of A atoms which have been removed is $\overline{33}$. The $Zr_7O_9F_{10}$ structure can be derived from seven parent units by

Number of

removing A atoms in the sequence 43434 which gives the composition $(MA)_{14}A_{28-4}$. This implies that the coordination is unchanged for two of the fourteen M atoms. However, the rearrangement of the atoms around the empty sites (Fig. 4) increases the distances between these two cations and two of the anions [thus Zr(1)-OF(3)=3.29 Å]. This leaves six anions as close neighbours, mean distance 2.05 Å in $Zr_7O_9F_{10}$. Starting from the hypothetical $(MA)_2A_4$ structure, a series of structures can be postulated in which the ratio between seven and eight coordinated M atoms may increase. Their compositions will be $(MA)_{2(3n+1)}$

 $\times A_{4(3n+1)-2n}$ where (3n+1) is the number of parent units in which 2n A atoms have been removed. The

Fig. 3. The hypothetical orthorhombic MA_3 structure and its relation to α -UO₃. Open circles represent M atoms at $z_o = 0$ and A atoms at $z_o = \frac{1}{2}$ and small filled circles A atoms at $z_o = 0$ (a). Idealized representation of the U₃O₈ (b) and the $Zr_7O_9F_{10}$ (c) structures. The crosses indicate A atoms subtracted from the MA_3 matrix.

Table	7.	The	series	$(MA)_{2(2n+1)}A_{A(2n+1)-2n}$
10010	••		001100	-1****//ls/2*11**4ls/2+11=/2

Member	Number of parent units $(3n+1)$	removed A atoms (2n)	Sequence	$(MA)_{2(3n+1)}A_{4(3n+1)-2n}$	$\frac{A}{M} = 3 - \frac{2n}{2(3n+1)}$	Compound
0	1	0		$(MeA)_2A_4$	3	
1	4	2	1441	$(MeA)_{8}A_{14}$	2.750	
2	7	4	43434	$(MeA)_{14}A_{24}$	2.714	Zr7O9F10
3	10	6	343 343	$(MeA)_{20}A_{34}$	2.700	
7	22	14	33343333334333	(MeA)44A74	2.682	
8	3	2	1331	$(MeA)_{6}A_{10}$	2.667	U_3O_8

Fig. 4. The rearrangement of the nearest A neighbours to a subtracted A atom (a) connected with the coordination change from eight to seven (b).

sequences will be 44,43434, $\overline{343343^{1}}$ and so on. Thus, the structure of $Zr_{7}O_{9}F_{10}$ is the second member of this series and the U₃O₈ structure the end member, Table 7.

To reduce the anion to cation ratio below $\frac{8}{3}$ (M_3A_8) requires the introduction of six coordination by removing A atoms with the sequence 2, which very likely occurs in the oxygen deficient non-stoichiometric U_3O_8 (Sato, Doi, Ishii & Ushikoshi, 1961). This concept will be further discussed in a forthcoming article on the structure of $Nb_5O_{12}F$.

The author wishes to thank Professor A. Magnéli for valuable comments on the manuscript.

References

- ANDRESEN, A. F. (1958). Acta Cryst. 11, 612.
- Crystal Structure Calculations System, X-ray 63 (1964). TR-64-6 (NSG-398), Computer Science Center, Univ. of Maryland, and Research Computer Laboratory, Univ. of Washington.
- HOLMBERG, B. (1966). Acta chem. scand. 20, 1082.
- HUGHES, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
- International Tables for X-ray Crystallography (1962). Vol. III, Birmingham; Kynoch Press.
- KOLDITZ, L. & FELTZ, A. (1961). Z. anorg. allg. Chem. 310, 217.
- LOOPSTRA, B. O. (1964). Acta Cryst. 17, 651.
- SATO, R., DOI, H., ISHII, D. & USHIKOSHI, H. (1961). Acta Cryst. 14, 763.
- WERNER, P. E. (1966). World List of Crystallographic Computer Programs. 2nd Edn. Accession number 6019. Utrecht: Oosthoek.
- ZACHARIASEN, W. H. (1945). Manhattan Project Report CK-2667.
- ZACHARIASEN, W. H. (1943). Acta Cryst. 1, 265.

Acta Cryst. (1970). B26, 835

Aminoboranes. The Crystal Structure of 1, 3-Di-*p*-chlorophenyl-2-triethylcarbinyl-4-ethyl-5,5-diethyl-1,3-diaza-2,4-diborolidine, C₂₆H₃₈N₂B₂Cl₂*

BY CHUN-CHE TSAI AND WILLIAM E. STREIB[†]

Department of Chemistry, Indiana University, Bloomington, Indiana 47401, U.S.A.

(Received 9 February 1968 and in revised form 5 August 1969)

The structure of 1,3-di-*p*-chlorophenyl-2-triethylcarbinyl-4-ethyl-5,5-diethyl-1,3-diaza-2,4-diborolidine, $C_{26}H_{38}N_2B_2Cl_2$, has been determined by a three-dimensional single-crystal X-ray diffraction study. The crystals are tetragonal, space group $P4_2/m$, $a = 16.943 \pm 0.008$, $c = 9.599 \pm 0.005$ Å at approximately $-125^{\circ}C$ with four molecules per unit cell. The structure was solved independently by Patterson map analysis and by the direct method. The molecule contains a heterocyclic five-membered ring which is isoelectronic with cyclopentadiene. Bond lengths in this ring are N(1)-B(2)=1.433 (10), B(2)-N(3)= 1.489 (9), N3 - B(4) = 1.421 (10), B(4)-C(5) = 1.576 (11) and C(5)-N(1) = 1.492 (10) Å. Crystal symmetry requires the molecule to have $m(C_S)$ symmetry which is, however, pseudosymmetry due to disorder of one of the ethyl groups. The residual is 0.072 for 1814 observed data.

Introduction

The heterocyclic compound, $C_{26}H_{38}N_2B_2Cl_2$, was synthesized by Casanova & co-workers (Casanova, Kiefer, Kuwada & Boulton, 1965; Casanova, 1966; Casanova & Kiefer, 1969) who suggested the problem to us as one which needed structural proof and as part of a continuing collaboration to determine fundamental chemical and structural information about aminoboranes. Our preliminary communication (Tsai & Streib, 1968) reported the correct structure to contain a diazadiborolidine ring. We present here the completed study and a more detailed interpretation of our results.

Experimental

The colorless crystals grew as needles of square crosssection when recrystallized from methanol. Preliminary

^{*} Contribution No. 1798 from the Department of Chemistry, Indiana University.

[†] Author to whom correspondence should be addressed.